
Science and Computers II: Project 2

Part I

Numerical Techniques

1 Using computers to solve physics problems

The vast majority of real life physics problems do not have simple exact analytic solutions that
can be easily obtained. Even for your lecture courses, your professors often go to great lengths
to think up special case examples that you can solve analytically. This leaves two options:

• make approximations so that an approximate solution can be found (perturbation theory
in quantum mechanics is a good example of this);

• solve the mathematics numerically after completing as much of the calculation anaytically
as is practical.

In this course, we will focus on the latter.

In most cases, numerical problems in physics boil down to one of four things:

Algebra: the manipulation of numbers, vectors, matrices etc., whose manipulation, though
conceptually straightforward, is too long and arduous to do by hand.

Numerical Integration: Most often our analytic calculations are stopped by encountering a
nasty integral. Maybe it doesn’t have a closed form, or if it does, it is too complicated
to reliably write down, or maybe we just want the flexibility to change the integral’s
boundary conditions without having to recalculate everything. This is perhaps the most
important class of numerical problem for physics, so this is where we will spend a great
deal of our time.

Differential Equations: Many of the laws of physics are described in terms of differential
equations. For example, wave mechanics, quantum mechanics, fluid mechanics, thermo-
dynamics, electromagnetism, general relativity and even classical dynamics, all involve
differential equations.

Root Finding: Often in solving equations in physics one has to find the roots of some com-
plicated function or polynomial. This can be a highly non-trivial task, and must often be
done numerically.

This categorization is not exclusive - there are many other cases - and, of course, it is rather
fluid. Many problems that appear at first sight to require a numerical treatment of differential
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equations are more easily done via numerical integration. An obvious example would be solving
the differential equation,

dy

dx
= f(x), (1)

which can be expressed instead as,

y =

∫
f(x) dx. (2)

(One cannot always do this though since the right-hand side may be a function of both x and
y, i.e. f(x, y).)

2 Numerical Integration

2.1 Integrals as averages

In essence, all numerical integrations are attempts to find the mean value of a function over a
(possibly multi-dimensional) integral,

I =

∫ x2

x1

f(x) dx = (x2 − x1) 〈f(x)〉. (3)

The most obvious way to calculate this numerically is simply to take some example choices of
x, let’s call them xi with i = 1 . . . N , calculate f(xi) and take the average value of f(xi) to
approximate the mean,

I ≈ (xN − x1)
1

N

N∑
i=1

f(xi). (4)

We could be slightly more sophisticated and put weights wi on each of these to make some
choices of xi more important than others,

I ≈ (xN − x1)
1

W

N∑
i=1

wif(xi), (5)

where the extra normalization factor is W =
∑N

i=1wi. Different numerical integration tech-
niques differ in their choice of how to pick a representative sample of xi and their relative
importance (what weights to choose).

2.2 Trapezoidal Rule

The trapezoidal rule, in its simplest form, is simply approximating the area under a curve by
that of a trapezoid. Clearly, this is Eq.(5) with N = 2 and wi = 1/2. We could go further and
split up the integration region into lots of little trapezoids of equal spacing in x. The total area
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Figure 1: A graphical representation of the simplest (N = 2) trapezoidal rule.

will then be the sum of these smaller areas which we can approximate via a trapezoid. So,

I ≈ (x2 − x1)
1

2
(f(x1) + f(x2)) + (x3 − x2)

1

2
(f(x2) + f(x3))

+(x4 − x3)
1

2
(f(x3) + f(x4)) + . . .+ (xN − xN−1)

1

2
(f(xN−1) + f(xN)) (6)

= (xN − x1)
1

N − 1

[
1

2
f(x1) + f(x2) + f(x3) + . . .+ f(xN−1) +

1

2
f(xN)

]
, (7)

where, in the last step, we have assumed that all the intervals are of equal size (so for example,
(x2 − x1) = (xN − x1)/(N − 1)). Clearly this is Eq.(5) with w1 = wN = 1/2 and wi = 1 for

1 < i < N .

Exercise 1: Exercise 1: Simple implementation of the trapezoidal rule

Write C code to do the following

double trap( double (*func)(double x), double a, double b, double h )

where a and b are the the end-points of the integration, h is the interval size to be used
[h = (xN − x1)/(N − 1)] and func is the name of the function to be integrated, which should
have the prototype

double my_function( double x )

So, for example, to evaluate ∫ 1

0

exp
(
−x2

)
dx

you would write
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#include <stdio.h>

#include <math.h>

double trap( double (*func)(double x), double a, double b, double h )

{

...

/* to evaluate the function at a value x call */

f = func( x );

...

}

double myfun( double x )

{

return exp( - (x*x) );

}

int main( int argc, char *argv[] )

{

double a = 0.0;

double b = 1.0;

double h = 0.1;

double ans;

ans = trap( myfun, a, b, h );

fprintf( stdout, "Answer = %e\n", ans );

return 0;

}

If you are not sure how to pass a function name as an argument to another function, see me.
Use your C code to calculate the integral

I =

∫ 2

0

[
2 + cos(2

√
x)
]
dx,

using the trapezoidal rule. In this case, the integral is doable analytically, so compare your
answer to the correct expression for N = 2, 4, 8, 16. Can you see any pattern in the error’s
dependence on N? Consider the Taylor expansion for the Trapezoidal Rule to determine the
dependence on N (or h). Is the error linear in h? Quadratic?

2.3 Simpson’s Rule

In the trapezoidal rule we are essentially approximating the curve by a set of straight lines
between fixed points on the curve. We could have instead approximated the curve using a set
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Figure 2: A graphical representation of the simplest (N = 3) Simpson’s rule.

of parabolas rather than straight lines, and if the curve is quite “wiggly” (that is, not straight)
we might expect to do a little better, see Figure 2.

You can calculate the area under a parabola quite easily, and anchoring it at the end and in
the middle we find,

I ≈ (x3 − x1)
1

2

[
1

3
f(x1 = a) +

4

3
f(x2 = m) +

1

3
f(x3 = b)

]
. (8)

This does much better than the simplest trapezoidal rule. The generalization to more points
(in exactly the same way as we did for the trapezoidal rule) is,

I ≈ (xN − x1)
1

N − 1

[
1

3
f(x1) +

4

3
f(x2) +

2

3
f(x3) +

4

3
f(x4) + . . .

+
2

3
f(xN−2) +

4

3
f(xN−1) +

1

3
f(xN)

]
, (9)

or in other words Eq. (5) with w1 = wN = 1/3, wi = 4/3 for 1 < i < N and i even, and
wi = 2/3 for 1 < i < N and i odd.

Exercise 2: Repeat the last exercise using Simpson’s Rule. What is the dependence of the
error on N this time? Try to understand this dependence from the Taylor series expansion for
the integral.

2.4 Gaussian Quadrature

In the previous example, Simpson’s Rule, we used a parabola to mimic the behavior of the
function over the range (x1, x3) and then extended this by dividing our integration up into lots
of “mini-integrations”. We could have taken an alternative approach, and instead of dividing
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up the region, we could have mimiced the function with more complicated polynomials. Clearly
these more complicated polynomials would also require more points in order to specify them,
but if we choose a set of polynomials which is complete (i.e. any well behaved function can be
built out of them) then we should be able to get arbitrarily close to the exact answer just by
including more of them. The terminology is that an n-point Gaussian Quadrature yields an
exact result for the integration of a 2n− 1 degree polynomial.

There are many different types of Gaussian Quadrature, depending on the polynomials you
choose to mimic your function with. Examples of these functions are Legendre polynomials,
Jacobi polynomials, Chebyshev polynomials, Laguerre polynomials, Hermite polynomials and
many more. Since you may not have met most of these functions yet, this integration method
is a little too advanced for this course and we won’t take it any further.

2.5 Monte Carlo Integration

In principle, it shouldn’t matter how we choose our xi and our weights wi, we should eventually,
for N large enough, reproduce the correct answer for any well behaved function. (Although
how we choose our xi and wi does affect how fast we converge on the correct result.) Monte
Carlo integration takes this principle to the extreme and chooses the xi randomly!

Looking again at Eq.(5) (this time with weights wi = 1 for simplicity),

I ≈ (xN − x1)
1

N

N∑
i=1

f(xi), (10)

we see no specification for the values xi. We just assumed that they should be uniformly spaced,
but this didn’t need to be the case.

Exercise 3: Repeat the numerical integration of

I =

∫ 2

0

[
2 + cos(2

√
x)
]
dx,

this time using random values for xi and unit weights. You can use the C function rand() to
generate random numbers. How fast does this converge?

If you have done the above tasks correctly, you will see that the Trapezoidal Rule has an error
∝ 1/N2, Simpson’s rule has an error ∝ 1/N4 and the Monte Carlo integration has an error
∝ 1/

√
N .

In fact, the error of a Monte Carlo integration is related to the standard deviation, σ, of the
integrand over the region. For a one dimensional integration, this is defined by,

σ2 =
1

N

N∑
i=1

[
f(xi)− f̄

]2
=

1

N

(
N∑
i=1

[f(xi)]
2

)
− f̄ 2 (11)

where the mean is,

f̄ =
1

N

N∑
i=1

f(xi). (12)
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Then the Monte Carlo error is
σMC =

σ√
N
. (13)

2.6 The advantages of Monte Carlo integration

So if the convergence of Monte Carlo integration is slower than the other methods we have
already looked at, what is it good for?

• Fast convergence for many dimensions: Although the other methods give much
smaller errors for one dimensional integrations, their errors grow with the number of
dimensions. For a d dimensional integration, the Trapezoidal Rule’s error is ∝ N−2/d

and Simpson’s Rule’s error is ∝ N−4/d, but a Monte Carlo integration error is always
∝ 1/

√
N .

• Easy to incorporate awkward boundary conditions: In the one dimensional cases
we have looked at so far, the boundary conditions were rather trivial (just numbers), but
for higher dimensional integrations they can become quite complex (surfaces). This make
the other rules quite difficult to program because you need to know explicit formulae
for the boundaries in terms of the variable you are integrating over. For Monte Carlo
integration, you can simply choose to generate the ~xi over a larger space which has simple
boundaries, check whether or not the point lies in the space you are interested in, and
throw it away if it isn’t.

• Small feasibility limit: You can see that the trapezoidal rule and Simpson’s rule both
need at least two or three xi before you even start. While this is fine for small numbers
of dimensions, for larger dimensional integrals you need to have at least this number of
points raised to the power of the number of dimensions. For example, for a 10-dimensional
integration, Simpson’s rule needs a minimum of 310 = 59049 points! This is not the case
for a Monte Carlo integration where in principle one point (or two if you want an estimate
of the error) will do (but of course would give very bad errors).

• Ability to improve the calculation: For other integration methods you are “locked
in” to the accuracy you choose at the start of your calculation. For example, in Simpson’s
rule, you choose N and then set your xi and wi accordingly. If you then decide that your
answer is not accurate enough, you need to increase N and start the calculation again.
For a Monte Carlo integration you can just keep adding points until you get the accuracy
you want - N is not fixed at the start.

• Integration as physical simulation: Many physics systems are stochastic, relying on
apparently random effects (e.g. thermodynamics) or possible even truely random effects
(e.g. quantum mechanics). Monte Carlo’s can then model physical systems where each
generated point is analogous to a physical event. This gives a much more intuitive physical
picture of what is going on in the Monte Carlo integration/simulation.

7



Exercise 4: To demonstrate the second of these advantages, write a C program to calculate
the volume of a sphere embedded in n dimensions. Check that for 10 dimensions, its volume is,

V =
π5

120
r10,

where r is the radius. (This problem is much easier than it sounds, so if you are having trouble
figuring it out, please ask!)

Exercise 5: Consider a crescent, as seen in Figure 3, and bounded by the curves,

x2 + y2 = a2, (14)

(x− c)2 + y2 = b2, (15)

where a, b and c are constants with b < a and a− b < c < a+ b. Assuming it is uniform in the
z-direction (out of the page) write a C program to calculate its moment of inertia about the
axis x = y = 0.

Figure 3: A crescent.

Note that both of the above tasks would be very difficult to do using non-Monte Carlo numerical
integrations (though the first one is straightforward to do analytically).

2.7 The importance of flat distributions

It should be fairly obvious that if the distribution we are integrating is perfectly flat, then
〈f(x)〉 = f(x) for all x and all these integration methods give a perfect result with smallest
N . Of course, in this case one would not be integrating it numerically! However, it is generally
true that these methods all work better if the integrand is reasonably flat, and work poorly if
the integrand has a strong dependence on the parameter you are integrating over. So, if we
can manipulate our integration to make it reasonably flat before numerical integration, we will
need far fewer points for the integration to reach the desired accuracy.
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So how do we do this? Consider integrating a function f(x), and suppose we know of a function
g(x) which we know how to integrate analytically which is approximately the same as f(x) over
the range of x we are integrating over. Then,∫

f(x)dx =

∫
f(x)

g(x)
dy, (16)

where

dy = g(x)dx ⇒ y =

∫
g(x)dx. (17)

Since we know how to integrate g(x) we can work out y analytically. A numerical integration
over y will be more efficient than an integration over x since f(x)/g(x) is reasonably flat.

Let’s have a concrete example. Consider the integration,

I =

∫ 10

−10

1 + 1
4

cosx

1 + x2
dx, (18)

As shown in figure 4. Unaltered, this would be difficult to integrate numerically since our Monte
Carlo will very often choose values of x that contribute little to the mean.

Figure 4: The function f(x) =
(
1 + 1

4
cosx

)
/(1 + x2).

However, the function g(x) = 1/(1 + x2) is easy to integrate,∫
1

a2 + x2
dx = tan−1 x+ constant, (19)

so we can change variables to y = tan−1 x and write,

I =

∫ 10

−10

1 + 1
4

cosx

1 + x2
dx =

∫ tan−1 10

− tan−1 10

[
1 +

1

4
cos (tan y)

]
dy. (20)

9



This is now quite flat, so the error is greatly reduced.

Exercise 6: Calculate the integral Eq.(18) using a Monte Carlo integration, first using x as
your integration variable and then y = tan−1 x. In both cases, quantify the Monte Carlo error
(as in Eq.(13)) and compare the two methods.

2.8 Monte Carlo as a physical simulation

So far, Monte Carlo’s have been just a tool for performing integrations. However, as described
in section 2.6 they can be used to simulate experiments with some random element.

To understand this, let’s again consider an example: Buffon’s Needle. In 1777 the Comte de
Buffon posed the following problem: imagine a board with lines drawn on it at equal spacing
t, upon which a needle of length l is randomly thrown; what is the probability of the needle
landing across one of the lines. See Figure 5 for a pictorial representation.

Figure 5: Buffon’s Needle problem. A needle of length l is randomly thrown onto a board with
lines drawn on it at equal spacing t. What is the probability of the needle landing on one of
the lines?

Analytically, this is quite straightforward. If x is the distance of the centre of the needle to the
closest line, and θ is the angle between the needle and the lines, then it will cross the line if,

x ≤ l

2
sin θ. (21)

Since x is random between 0 < x < t
2

and the angle θ is random between 0 < θ < π/2 then the
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probability of the needle landing on a line is,∫ π/2

0

dθ

∫ (l/2) sin θ

0

dx∫ π/2

0

dθ

∫ t/2

0

dx

=

∫ π/2

0

dθ
l

2
sin θ∫ π/2

0

dθ
t

2

=
l/2

πt/4
=

2l

πt
. (22)

So one could, in principle, determine the value of π by throwing lots of needles on such a board:
if you throw N needles and n land on a line, then,

π ≈ 2lN

nt
. (23)

This experiment has been done many times, most famously in 1901 by an Italian mathematician
called Lazzerini, who found π = 3.1415929 after 3408 throws.

We can simulate this experiment on a computer by generating random numbers and using them
to give us values of x and θ for each needle thrown. For each x and θ choice we then decide if
the needle crosses a line (i.e. if x ≤ (l/2) sin θ) and add one to n if it does. In essence, we are
using a Monte Carlo to do the integration in Eq.(22), but due to the probabilistic nature of the
experiment, this is also a simulation.

NB: You should realize that this is not an actual calculation of π since we need to input π into
our program in order to generate a random number between 0 and π/2 (for θ). This is only a
simulation of an experiment. (Can you think how we might modify it to actually calculate π
with no π inputed?)

Exercise 7: Write a Monte Carlo to simulate Buffon’s experiment. Quantify your Monte Carlo
error on the measurement.

3 The 2d Ising Model

The two-dimensional Ising Model is a model of ferromagnetism in solids. It is important because
it was the first and for a long time the only exactly solvable model with a phase transition.
Phase transitions are important throughout physics, from condensed matter to particle physics.
The Ising model is a prototype for the study of phase transitions, and is of broad interest, i.e.
there is more to it than just the study of magnetic materials.

The Hamiltonian, or total energy of the system in a state {si,j} is

H({si,j}) = −J
∑
i,j

si,j(si+1,j + si−1,j + si,j+1 + si,j−1), (24)

where we assume only nearest neighbor interactions with coupling J and periodic boundary
conditions. The probability of finding the system in a particular state {si,j} is given by

P ({si,j}) =
1

Z(β)
exp[−βH({si,j})], (25)
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where β = 1/(kBT ), with kB Boltzmann’s constant, T the temperature, and

Z(β) =
∑
si,j

exp[−βH({si,j})], (26)

where Z is called the partition function.

In order to calculate macroscopic quantities like the magnetization, you need to sum over all
spin configurations weighted by their respective probabilities. This can be done using the
Metropolis algorithm (see, e.g. arXiv:0803.0217 for the basic idea). The mean magnetization
can be computed using

〈M〉 =
1

N

∑
{si,j}

M({si,j}), (27)

where one averages over the N configurations generated using the probability P ({si,j}).
Exercise 8:

• Make sure that you have a random number generator that creates pseudo random numbers
uniformly distributed between [0, 1).

• Create a one-dimensional array that contains the spin (1 or -1) for every site of a L× L
lattice. Initialize your lattice with all spins set to 1.

• Use the Metropolis algorithm to update your system.

• Display the Monte Carlo time evolution using the animation software provided.

• Calculate the magnetization as a function of the effective βeff = J/(kBT ). Include an
estimate of the statistical error. Where is the phase transition?

• A better way to locate the phase transition is using the magnetic susceptibility χM =
〈M2〉 − 〈M〉2, which diverges at the phase transition (in the infinite volume limit). Com-
pute this quantity as a function of βeff and locate the critical βc. How does this compare
to the analytical result of βc = 1

2
ln(1 +

√
2)?

4 Project Report

You should write a report on your Ising Model simulations (Exercise 8), and, in addition, you
should choose one of the exercises from 4-7 to include in your report. Your report should
be written using LATEX(unless you have a very strong preference for another package with
similar capabilities). You should include an abstract, and an introduction that explains why
the exercises are interesting and provides a summary of the projects. You should explain how
you solved the problem, including the algorithm you used (without detailed C code) and present
your results. Remember to make an estimate of your errors! Finally you should draw some
conclusions and summarize your work, making suggestions on how your calculation could be
improved (or not!). Your C code and outputs should be reserved for an appendix. If you use
anybody else’s algorithm, results, formulas or information, be sure to reference them.
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