Science and Computers II: Project 4

Numerical Solution of the Schrodinger Equation

The Schrodinger equation for a one-dimensional simple harmonic potential is given by
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where h Planck’s constant divided by 2m, k is the “spring constant” of the oscillator and
E' is the energy. There are a number of techniques one can use to numerically solve the one-
dimensional Schrodinger equation. In this exercise you will find the eigenvalues and eigenvectors
of a hydrogen atom vibrating in this potential.

When dealing with numerical solutions of equations like this, it is often useful to use dimen-
sionless variables to eliminate very small numbers (such as /) from the numerics. Equation (1)
can be made dimensionless by letting
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Demonstrate that 4 and F are dimensionless and show that when we transform to these variables
equation (1) simplifies to
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where V = 2.

For physically acceptable solutions, i.e. those for which |42 is integrable, we require 1 — 0 as
T — doo. This is only possible for certain values of E called eigenvalues.

Analytic solutions exist to equation (2) in the form
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where n > 0 is an integer and H,, are the Hermite polynomials defined by Hy = 1, H; = 22
and the recurrence relation
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The corresponding eigenvalues are

A

E,=2n+1 where n > 0 is an integer.
For a general differential equation of the form
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we can use an algorithm called Numerov’s Method to integrate the equation. Starting from the
Taylor expansion for y(x,) we get for the two sampling points adjacent to x,
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The sum of those two equations gives
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We solve this equation for y,, and replace it by the expression y” = — f,,y,, which we get from

the defining differential equation.
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We take the second derivative of our defining differential equation and get
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We replace the second derivative % with the second order difference quotient and inset this
into our equation for f,y,
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We neglect the terms of O(h?) collect the terms for y, and thus get
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and so
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Therefore, since we can write the Schrédinger equation in the form
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for a uniformly spaced set of grid points labeled : = 0,1, 2, ... with spacing h the value of ¢ at
grid point ¢ 4+ 1 is approximately related to the values at grid points ¢ and ¢ — 1 by
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where f; and ¢; are the values of f(z) and ¢(x) at x = ih.

We must think about where to start the integration and about the boundary conditions there.
The obvious starting points are at & = 0 or at & = oo (or in practice some large value).
Since V(Z) is symmetric, solutions will fall into even or odd categories. If we start at & = 0,
convenient boundary conditions will be

_ do _

»(0) =1, i 0 ¢ even,
_ do _

6(0)=0, Z2=1  ¢odd

Note that you will only need values of ¢ at two grid points to start this calculation, but the
boundary condition only provides values at one grid point. Values at a second point can be
calculated using a Taylor series expansion
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where prime denotes differentiation with respect to . Show that this leads to
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¢(h) = ¢(0)+ %Qf(O)cb(O) +2 [£7(0)¢(0) +2f'(0)¢'(0) + f*(0)¢(0)] + -+ even solutions,
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o(h) = he'(0) + 5 [£(0)¢'(0) + f(0)p(0)] + - -+ odd solutions.

Note that for the harmonic oscillator, f'(0) = 0, even n corresponds to even solutions and odd
n corresponds to odd solutions.

Write a program to integrate equation (1) from & = 0 to some suitable upper bound z; using the
algorithm given in equation (3) and plot both the numerical results and the analytic solution.
Your program should take h,z;,n and E as input and should be able to deal with both even
and odd n. You may find it convenient to write f(#) and the Numerov algorithm as functions.
Note that equation (1) is homogeneous and so a solution may be scaled by an arbitrary factor
and still be a solution. As described above, the analytical and numerical solutions may have
different scalings which must be allowed for when they are compared.

Choose h = 0.05 and & = 5 initially. Explore the dependence of the solution on the value of E
by running your program with £ = 0.95,1.0 and 1.05.

Why does your numerical solution differ from the analytic solution for large 27

Devise a method by which the eigenvalue E = 1 can be obtained starting at a trial value of
E reasonable near £/ = 1. One possibility, by no means the best, is to look for the value of E
which gives the smallest value of the wavefunction at 2; = 5. This starting from the first trial
value proceed by small steps in the direction of E which reduces this value.

Compute also the solutions of F near £ = 3,5 and 7.



