
Science and Computers II: Project 4

Numerical Solution of the Schrödinger Equation

The Schrödinger equation for a one-dimensional simple harmonic potential is given by(
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where h̄ Planck’s constant divided by 2π, k is the “spring constant” of the oscillator and
E is the energy. There are a number of techniques one can use to numerically solve the one-
dimensional Schrödinger equation. In this exercise you will find the eigenvalues and eigenvectors
of a hydrogen atom vibrating in this potential.

When dealing with numerical solutions of equations like this, it is often useful to use dimen-
sionless variables to eliminate very small numbers (such as h̄) from the numerics. Equation (1)
can be made dimensionless by letting
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Demonstrate that x̂ and Ê are dimensionless and show that when we transform to these variables
equation (1) simplifies to
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dx̂2
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)
ψ = 0. (2)

where V̂ = x̂2.

For physically acceptable solutions, i.e. those for which |ψ|2 is integrable, we require ψ → 0 as
x̂→ ±∞. This is only possible for certain values of Ê called eigenvalues.

Analytic solutions exist to equation (2) in the form

ψ = Hn(x̂) exp

(
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)
where n ≥ 0 is an integer and Hn are the Hermite polynomials defined by H0 = 1, H1 = 2x̂
and the recurrence relation

Hn+1 = 2x̂Hn(x̂)− 2nHn−1(x̂)

The corresponding eigenvalues are

Ên = 2n+ 1 where n ≥ 0 is an integer.

For a general differential equation of the form
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dx2
y(x) = f(x, y(x))
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we can use an algorithm called Numerov’s Method to integrate the equation. Starting from the
Taylor expansion for y(xn) we get for the two sampling points adjacent to xn

yn+1 = y(xn + h) = y(xn) + hy′(xn) +
h2

2!
y′′(xn) +

h3

3!
y′′′(xn) +

h4

4!
y′′′′(xn) +

h5

5!
y′′′′′(xn) +O(h6)
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The sum of those two equations gives

yn−1 + yn+1 = 2yn + h2y′′n +
h4

12
y′′′′n +O(h6)

We solve this equation for y′′n and replace it by the expression y′′n = −fnyn which we get from
the defining differential equation.
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We take the second derivative of our defining differential equation and get

y′′′′(x) = − d2

dx2
[f(x)y(x)]

We replace the second derivative d2

dx2 with the second order difference quotient and inset this
into our equation for fnyn
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We neglect the terms of O(h4) collect the terms for yn and thus get(
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and so
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Therefore, since we can write the Schrödinger equation in the form

d2φ(x)

dx2
= f(x)φ(x)

for a uniformly spaced set of grid points labeled i = 0, 1, 2, . . . with spacing h the value of φ at
grid point i+ 1 is approximately related to the values at grid points i and i− 1 by(
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where fi and φi are the values of f(x) and φ(x) at x = ih.

We must think about where to start the integration and about the boundary conditions there.
The obvious starting points are at x̂ = 0 or at x̂ = ∞ (or in practice some large value).
Since V̂ (x̂) is symmetric, solutions will fall into even or odd categories. If we start at x̂ = 0,
convenient boundary conditions will be

φ(0) = 1,
dφ

dx̂
= 0 φ even,

φ(0) = 0,
dφ

dx̂
= 1 φ odd.

Note that you will only need values of φ at two grid points to start this calculation, but the
boundary condition only provides values at one grid point. Values at a second point can be
calculated using a Taylor series expansion

φ(h) = φ(0) + hφ′(0) +
h2
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where prime denotes differentiation with respect to x̂. Show that this leads to

φ(h) = φ(0) +
h2

2
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[
f ′′(0)φ(0) + 2f ′(0)φ′(0) + f 2(0)φ(0)

]
+ · · · even solutions,

φ(h) = hφ′(0) +
h3
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[f(0)φ′(0) + f ′(0)φ(0)] + · · · odd solutions.

Note that for the harmonic oscillator, f ′(0) = 0, even n corresponds to even solutions and odd
n corresponds to odd solutions.

Write a program to integrate equation (1) from x̂ = 0 to some suitable upper bound x̂1 using the
algorithm given in equation (3) and plot both the numerical results and the analytic solution.
Your program should take h, x̂1, n and Ê as input and should be able to deal with both even
and odd n. You may find it convenient to write f(x̂) and the Numerov algorithm as functions.
Note that equation (1) is homogeneous and so a solution may be scaled by an arbitrary factor
and still be a solution. As described above, the analytical and numerical solutions may have
different scalings which must be allowed for when they are compared.

Choose h = 0.05 and x̂ = 5 initially. Explore the dependence of the solution on the value of Ê
by running your program with Ê = 0.95, 1.0 and 1.05.

Why does your numerical solution differ from the analytic solution for large x̂?

Devise a method by which the eigenvalue Ê = 1 can be obtained starting at a trial value of
Ê reasonable near Ê = 1. One possibility, by no means the best, is to look for the value of Ê
which gives the smallest value of the wavefunction at x̂1 = 5. This starting from the first trial
value proceed by small steps in the direction of Ê which reduces this value.

Compute also the solutions of Ê near Ê = 3, 5 and 7.
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