
Science and Computers II: Project 3

One of the goals of this project is for you to gain familiarity with using a software library to
solve a physical problem, rather than writing an entire code from scratch; consequently the
first two exercises will likely be quite short. You are not explicitly told which GSL routines to
use, as part of the exercise is for you to learn how to locate the appropriate routine to solve a
problem.

All material in this project is assessed and your report should document the results of all three
exercises in separate sections. I suggest writing up the sections as you complete them, rather
than leaving all the writing until the end.

Before attempting Exercises 1 and 2, you should first read Section 2 of the GSL reference
manual

http://www.gnu.org/software/gsl/manual/html_node/Using-the-library.html

which explains how to use GSL and link the library into your programs. Then work through
the exercise. You should identify the relevant numerical problem, e.g. root finding, numerical
integration, etc. and then choose an appropriate routine from GSL to solve the problem. If
you are having trouble doing this, please see me.

Exercise 1

The amplitude of the Fraunhoffer diffraction pattern is given by the expression

A = A0
sinx

x

where x = 1
2
ka sin θ, k is the wavenumber of the light, a is the slit width and θ is the diffraction

angle. Suppose that the wavelength of the light is 589.29 nm and the width of the slit is
2.8 µm. The purpose of this exercise is to find the angles of the maxima in the diffraction
pattern. Clearly the values of x for which the zeros occur must satisfy sinx = 0 and therefore
are readily determined. What equation must be satisfied by the values of x that correspond to
the maxima in the diffraction pattern? The maxima will generally lie between the minima—we
therefore have upper and lower bounds for the maxima.

As a general rule: Whenever possible use root-finding routines that bracket the roots—that is
safer than using a routine that only asks for an initial approximation.

How many maxima will there be? Call a suitable GSL routine to find the values of x that
correspond to these maxima. Finally find the angles corresponding to the maxima. Check your
results.

Exercise 2

Consider the following 3× 3 matrix: 1 2 3
2 2 3
3 3 3


1



Using suitable GSL functions find (a) its inverse, (b) its determinant, (c) its eigenvalues and
eigenvectors.

Write a program that generates matrices of size 1000× 1000, 2000× 2000, ..., up to 10, 000×
10, 000. How long does it take the computer to find the determinant of such a matrix? You must
be careful not to print the matrices out to stderr or stdout, or this will slow the calculation.
How does the timing scale with the problem? How long do you think it would take to find the
determinant of a 106 × 106 matrix?

Exercise 3

In this exercise, you should write the code from scratch (no GSL routine). Write a code that
solves the Laplace equation in two dimensions using the method of over-relaxation. Laplace’s
equation applies to many different physical systems, from electromagnetism in a region without
charges, to steady-state heat flow, to the displacement of a membrane (see the Feynman Lec-
tures, Vol II). (Material here taken from Numerical Solution of Laplace’s Equation, Per Brinch
Hansen) Laplace’s equation in two-dimensions is

∂2u

∂x2
+
∂2u

∂y2
= 0. (1)

It is sometimes also written
∇2u = 0. (2)

Consider a square region, with temperature 100 (in our arbitrary units) at the top of the
square and zero elsewhere. We use the following notation for the values and coordinates of the
temperature field surrounding a site,

un = u(x, y + h)

uw = u(x− h, y) uc = u(x, y) ue = u(x+ h, y)

us = u(x, y − h)

If the grid spacing h is sufficiently small, we can approximate the temperature using a Taylor
expansion to the right (east) of the central point,

ue ≈ uc + h
∂u

∂x
+

1

2
h2
∂2u

∂x2
,

Similarly, we can expand about the left (west) point,

uw ≈ uc − h
∂u

∂x
+

1

2
h2
∂2u

∂x2
.

Adding these two equations together, we get

ue + uw ≈ 2uc + h2
∂2u

∂x2
.

2



Similarly in the vertical direction, we have

un + us ≈ 2uc + h2
∂2u

∂y2
,

We can combine these two equations to obtain

∇2u ≈ (un + us + ue + uw − 4uc)/h
2.

Since the left-hand side is zero by Laplace’s equation, we have

4uc − un − us − ue − uw ≈ 0,

or
uc ≈ (un + us + ue + uw)/4.

Thus, in thermal equilibrium, the temperature at each grid point is the average of its neighbors.

This suggests the following algorithm, called Gauss-Seidel relaxation. First set the boundary
conditions. Then, set all of the other values to the average over the boundary. Then, sweep
through the lattice, setting each site to the average of its neighbors. This procedure will
eventually converge to the correct result. It turns out that the convergence can be sped up
using over-relaxation, where a new temperature is chosen according to

next = (1− f)× uc + f × (un + us + ue + uw)/4

for some value of f . For f = 1 we have Gauss-Seidel, and for over-relaxation, f > 1. The
procedure only converges if f < 2. David Young [1954] developed a theory of overrelaxation,
showing that for an L× L grid, the fastest convergence is obtained with the relaxation factor

fopt = 2− 2π/L.

Implement overrelaxation to solve the Laplace equations for the boundary conditions specified.
Use a grid size of at least 100×100. Compare to the analytical solution for a 10 cm2 metal
plate with one side held at 100 degrees (in absolute units) and the other sides at zero:

T =
∑
odd n

400

nπ sinhnπ
sinh

[nπ
10

(10− y)
]

sin
(nπx

10

)
.

3


