

Welcome back to Physics 211

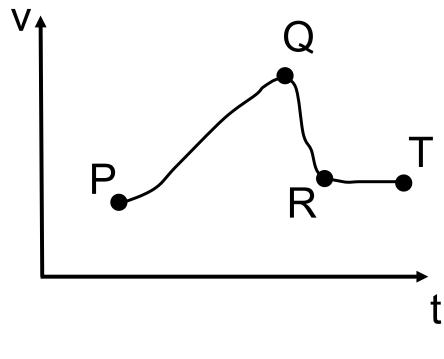
Lecture 2-1

02-1

Slide 1

- Last time:
 - Displacement, velocity, graphs
- Today:
 - Using graphs to solve problems
 - Constant acceleration, free fall

1-2.6-8: Acceleration from graph of v(t)



- What is a_{av} for 6. PQ ? 7. QR ? 8. RT ?
 - 1. $a_{avg} > 0$ 2. $a_{avg} < 0$ 3. $a_{avg} = 0$

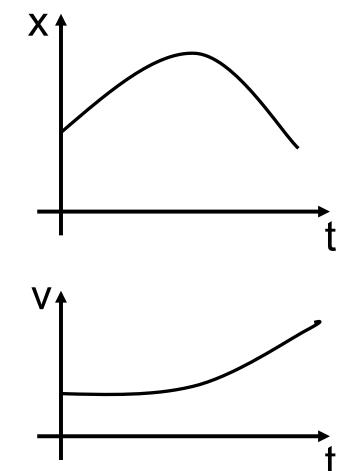
•Slope measures acceleration –Positive a means v is increasing –Negative a means v decreasing

Cart demo

• Sketch graphs of position, velocity, and acceleration for cart

Interpreting x(t) and v(t) graphs

- Slope at any instant in x(t) graph gives instantaneous velocity
- Slope at any instant in v(t) graph gives instantaneous acceleration



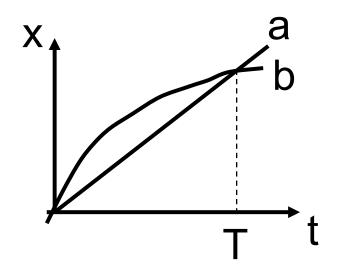
Slide

• What else can we learn from an x(t) graph?

Clicker question 2-1.1: You are throwing a ball up in the air. At its highest point, the ball's

- 1. Velocity v and acceleration a are zero
- 2. v is non-zero but a is zero
- 3. v and a are both non-zero
- 4. a is non-zero but v is zero

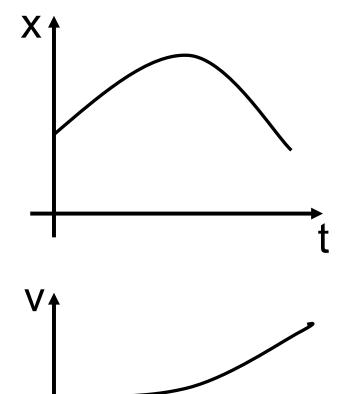
2-1.2 The graph shows 2 trains running on parallel tracks. Which is true:



- 1. At time T both trains have same v
- 2. Both trains speed up the whole time
- 3. Both trains have the same v for some t<T
- 4. Somewhere, both trains have the same acceleration

Interpreting x(t) and v(t) graphs

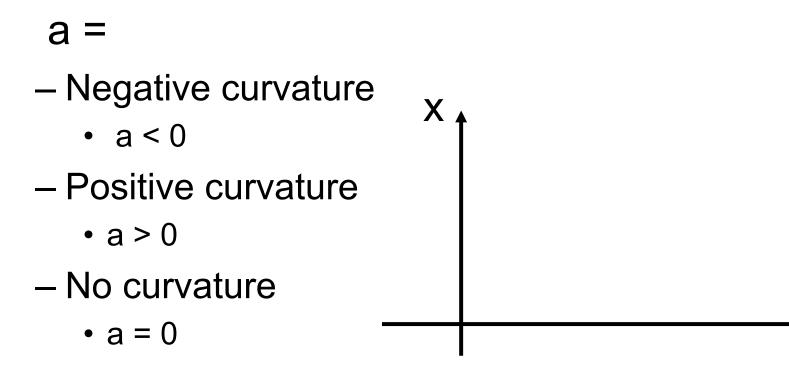
- Slope at any instant in x(t) graph gives instantaneous velocity
- Slope at any instant in v(t) graph gives instantaneous acceleration



 What else can we learn from an x(t) graph?

Acceleration from x(t)

- Rate of change of slope in x(t) plot equivalent to *curvature* of x(t) plot
- Mathematically, we can write this as



Slide

Sample problem

- An object's position as a function of time is given by x(t) = (3.00 m) - (2.00 m/s) t + (3.00 m/s²) t².
 - Clicker 2-1.3:Calculate the avg. accel. between t = 2.00s and t = 3.00 s.
 - 1. 3 m/s^2
 - 2. 2 m/s^2
 - 3. 4 m/s^2
 - 4. 12 m/s^2
 - 5. None of the above

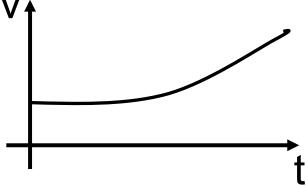
Sample problem

- An object's position as a function of time is given by x(t) = (3.00 m) - (2.00 m/s) t + (3.00 m/s²) t².
 - Calculate the avg. accel. between t = 2.00s and t = 3.00 s.
 - Clicker 2-1.4: Calculate the inst. accel. at (i) t = 2.00 s; (ii) t = 3.00 s.
 - 1. 6 m/s^2 , 6 m/s^2
 - 2. 3 m/s^2 , 3 m/s^2
 - 3. 4 m/s^2 , 6 m/s^2
 - 4. 6 m/s^2 , 4 m/s^2
 - 5. None of the above

Displacement from velocity curve?

- Suppose we know v(t) (say as graph), can we learn anything about x(t) ?
- Consider a small time interval ∆t

$$v = \Delta x / \Delta t \rightarrow \Delta x = v \Delta t$$



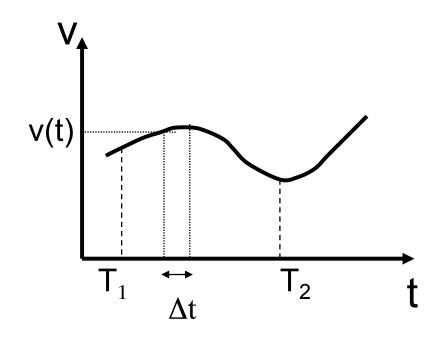
• So, total displacement is the sum of all these small displacements Δx

$$x = \Sigma \Delta x = \lim_{\Delta t \to 0} \Sigma v(t) \Delta t =$$

Physics 211 - Fall 2014

Slide 12

Graphical interpretation



Displacement between T_1 and T_2 is area under v(t) curve

Displacement – integral of velocity

lim_{Δt→0} Σ Δt v(t) = area under v(t) curve note: `area' can be positive or negative *Consider v(t) curve for cart in different situations...

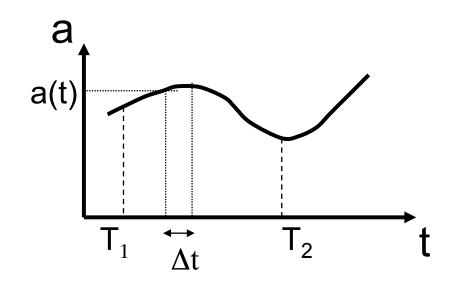
*Net displacement?

Slide

14

Velocity from acceleration curve

 Similarly, change in *velocity* in some time interval is just area enclosed between curve a(t) and t-axis in that interval.



Summary

- velocity v = dx/dt
 = slope of x(t) curve
 NOT x/t !!
- displacement ∆x is
 ∫v(t)dt
 = area under v(t)
 curve
 NOT vt !!

- **accel.** a = dv/dt
 - = slope of v(t) curve
 NOT v/t !!
- change in vel. ∆v is
 ∫a(t)dt
 = area under a(t)
 curve
 NOT at !!

Slide

16

Simplest case with non-zero acceleration

- Constant acceleration: $a = a_{av}$
- Can find simple equations for x(t), v(t) in this case

Slide

17

1st constant acceleration equation

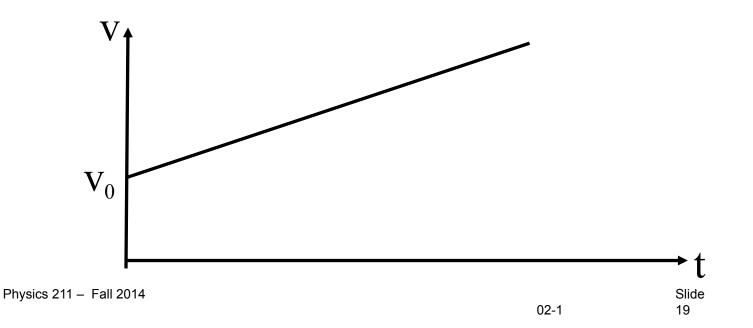
• From definition of a_{av} : $a_{av} = \Delta v / \Delta t$

Let
$$a_{av} = a$$
, $\Delta t = t$, $\Delta v = v - v_0$

1st constant acceleration equation

• From definition of a_{av} : $a_{av} = \Delta v / \Delta t$

Let
$$a_{av} = a$$
, $\Delta t = t$, $\Delta v = v - v_0$
Find: $v = v_0 + at$
*equation of straight line in v(t) plot

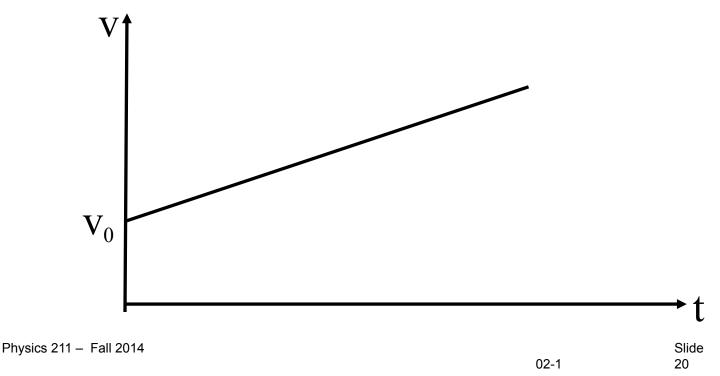


2nd const. acceleration equation

• Notice: graph makes it clear that

$$v_{av} = (1/2)(v + v_0)$$

$$x - x_0 = (1/2)(v + v_0)t$$



3rd constant acceleration equation

• Using 1st constant acceleration equation $v = v_0 + at$ insert into relation between x, t, and v_{av} :

$$x - x_0 = v_{av}t = (1/2)(v + v_0)t$$

(set
$$\Delta t = t$$
, i.e. take $t_0 = 0$)

3rd constant acceleration equation

• Using 1st constant acceleration equation $v = v_0 + at$

insert into relation between x, t, and v_{av} :

$$x - x_0 = v_{av}t = (1/2)(v + v_0)t$$

(set
$$\Delta t = t$$
, i.e. take $t_0 = 0$)

yields:
$$x - x_0 = (1/2)(2v_0 + at)t$$

or:
$$x = x_0 + v_0 t + (1/2)at^2$$

x(t) graph- constant acceleration $x = x_0 + v_0 t + (1/2)at^2$ Х parabola *Initial sign of v? *Sign of a ? t

Slide

23

4th constant acceleration equation

- Can also get an equation independent of t
- Substitute $t = (v v_0)/a$ into

$$x - x_0 = (1/2)(v + v_0)t$$

4th constant acceleration equation

- Can also get an equation independent of t
- Substitute $t = (v v_0)/a$ into

$$x - x_0 = (1/2)(v + v_0)t$$

we get:
$$2a(x - x_0) = v^2 - v_0^2$$

or:
$$v^2 = v_0^2 + 2a(x - x_0)$$

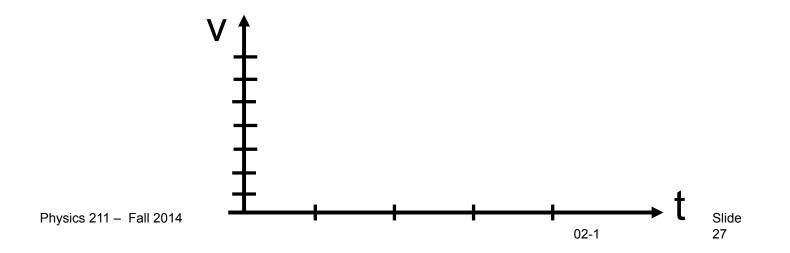
Slide 25 Clicker 2-1.5: An object moves with constant acceleration, starting from rest at t = 0 s. In the first four seconds, it travels 10 cm. What will be the displacement of the object in the following four seconds (*i.e.* between t = 4 s and t = 8 s)?

- 1. 10 cm
- 2. 20 cm
- 3. 30 cm
- 4. 40 cm

Rolling disk demo

- Compute average velocity for each section of motion (between marks)
- Measure time taken (metronome)
- Compare v at different times

(i) 10 cm (ii) 30 cm (iii) 50 cm (iv) 70 cm



Motion with **constant** acceleration:

$$v = v_0 + at$$

$$v_{av} = (1/2) (v_0 + v)$$

$$x = x_0 + v_0 t + (1/2) a t^2$$

$$v^2 = v_0^2 + 2a (x - x_0)$$

*where x_0 , v_0 refer to time = 0 s ; x, v to time *t*

Physics 211 – Fall 2014

Freely Falling Bodies:

 Near the surface of the earth, neglecting air resistance and the earth's rotation, <u>all</u> objects experience the same downward acceleration due to their gravitational attraction with the earth:

$$g = 9.8 \text{ m/s}^2$$

– Near = height small relative to radius of earth

Example of constant acceleration:

- Free fall demo
- Compare time taken by feather and billiard ball to fall to the ground from the same height
- Influence of air in room?

Sample problem

- A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 2.50 s. Ignore air resistance, so the brick is in free fall.
 - How tall, in meters, is the building?
 - What is the magnitude of the brick's velocity just before it reaches the ground?
 - Sketch a(t), v(t), and y(t) for the motion of the brick.

Motion in more than 1 dimension

- Have seen that 1D kinematics is written in terms of quantities with a magnitude and a sign
- Examples of 1D vectors
- To extend to d > 1, we need a more general definition of vector

Reading assignment

- Vectors, 2D motion
- 3.1-3.4, and reread 1.3 in textbook (review of vectors)
- 4.1-4.2, motion in 2D

Vectors: basic properties

- are used to denote quantities that have magnitude and direction
- can be added and subtracted
- can be multiplied or divided by a number
- can be manipulated graphically (*i.e.*, by drawing them out) or algebraically (by considering components)

Vectors: examples and properties

- Some <u>vectors</u> we will encounter: position, velocity, force
- Vectors commonly denoted by boldface letters, *or* sometimes arrow on top
- Magnitude of A is written |A|, or no boldface and no absolute value signs
- Some quantities which are <u>not</u> vectors: temperature, pressure, volume

Slide

35

Drawing a vector

- A vector is represented graphically by a line with an arrow on one end.
- Length of line gives the **magnitude** of the vector.
- Orientation of line and sense of arrow give the **direction** of the vector.
- Location of vector in space does not matter -- two vectors with the same magnitude and direction are equivalent, independent of their location