
PHY 211 - Exam 1

Name (please print):
SUID:
It is very important that you print your name at the top of every exam page. Please do it before you read any questions!
Document your work. Use the back of each sheet if you run out of space.
1.[25 pts total] Sam is driving at a steady 25 m/s when he passes Lisa, who is sitting in her car at rest. Lisa begins to accelerate at a steady 2.0 m/s² at the instant that Sam passes.
a. [7 pts] How far does Lisa drive before passing Sam?
b. [7 pts] What is her speed as she passes him?
c. [5 pts] Draw the two velocity-time graphs of Lisa and Sam. Your graphs can be sketches, but important features should be labeled. Make sure you label which curve belongs to Lisa and which belongs to Sam.
d. [6 pts] Draw the two position-time graphs of Lisa and Sam. Again, your graphs can be sketches, but important features should be labeled. Make sure you label which curve belongs to Lisa and which belongs to Sam.

Name (please print):
SUID:
2. [25 pts total] Simon leaves his house and follows the following three step path: He heads 50.0m due east. Then he travels 20.0m at 48 ⁰ north of east. He then travels 70.0m 62 ⁰ north of west.
a. [4 pts] Sketch the graph of Simon's path in two-dimensions.
b. [5 pts] What is Simon's net displacement?
c. [4 pts] What is the total distance that Simon travels?
d. [4 pts] Assume that Simon moves at constant speed. If the trip takes 100s, what is Simon's speed?
e. [4 pts] What is the magnitude of Simon's average velocity?
f. [4 pts] What is the magnitude of Simon's average acceleration?

Name (please print):	 - :	
SUID:		

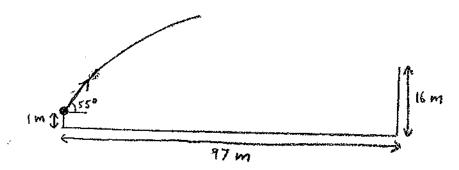
3. [25 pts total] The following diagram shows an arrow being shot off the edge of a very high wall at a speed of 50 m/s and an angle of 35⁰ above the horizontal. The wall is 230m above the level ground below.

- a. [4 pts] What are the initial (t=0) components of the velocity v_x and v_y of the arrow with respect to the x and y axis shown?
- b. [4 pts] Write down equations showing how these velocity components change with time t.

i.
$$v_x(t) =$$

ii.
$$v_y(t) =$$

c. [4 pts] Write down equations showing how the x and y coordinates of the arrow change with time t.


i.
$$x(t)=$$

ii.
$$y(t)=$$

- d. [6 pts] Neglecting air resistance, how far in the horizontal direction does the arrow travel?
- e. [7 pts] What is the magnitude and the direction of the velocity of the arrow when it hits the ground?

Name (please print):	 	
SUID:		

4. [25 pts total] A baseball is hit at a speed of 33 m/s and an angle of 55⁰ above the horizontal and 1.0 m above the ground. The backstop wall is 16 m high and 97 m from where the ball is hit. If the ball clears the backstop it is a homerun. Is the hit a homerun? If it is a homerun, by how much does the ball clear the backstop? If not, how far from the top of the backstop does the ball hit?

Formula Sheet for Physics 211

$$\vec{v} = \frac{d\vec{x}}{dt}; \quad \vec{a} = \frac{d\vec{v}}{dt}; \quad \vec{v}_{avg} = \frac{\Delta \vec{x}}{\Delta t}; \quad \vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t}$$

 $\Delta x = x(t_2) - x(t_1) = \text{signed area under the } v(t) \text{ curve from } t_1 \text{ to } t_2 = \int_{t_1}^{t_2} v(t) dt$

 $\Delta v = v(t_2) - v(t_1) = \text{signed area under the } a(t) \text{ curve from } t_1 \text{ to } t_2 = \int_{t_1}^{t_2} a(t) dt$

$$v_x = v_{0x} + a_x t;$$
 $x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2;$ $v_x^2 = v_{0x}^2 + 2a_x \Delta x$

$$\vec{v} = v_x \hat{i} + v_y \hat{j}; \qquad v = |\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

$$g = 9.8 \frac{m}{s^2}$$