Welcome back to Physics 211

Today's agenda:

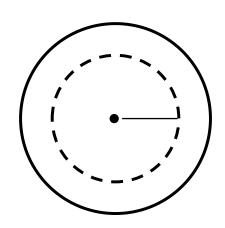
- Moment of Inertia
- Angular momentum

Current assignments

- Prelecture due Tuesday after Thanksgiving
- HW#13 due next Wednesday, 11/24
 Turn in written assignment to TA on 12/3

Relating linear and angular kinematics

• Linear speed: $v = (2\pi r)/T = \omega r$



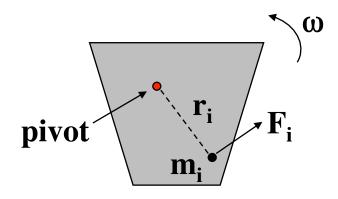
• Tangential acceleration: $a_{tan} = r\alpha$

• Radial acceleration: $a_{rad} = v^2/r = \omega^2 r$

Rotational Motion

* Particle *i*:

$$|v_i| = r_i \omega$$
 at 90° to r_i



* Newton's 2nd law:

$$m_i \Delta v_i / \Delta t = F_i^T$$
 \leftarrow component at 90° to r_i

* Substitute for v_i and multiply by r_i :

$$m_i r_i^2 \Delta \omega / \Delta t = F_i^T r_i = \tau_i$$

* Finally, sum over all masses:

$$(\Delta\omega/\Delta t) \sum m_i r_i^2 = \sum \tau_i = \tau_{net}$$

Discussion

$$(\Delta\omega/\Delta t) \; \sum m_i r_i^{\; 2} = \tau_{net}$$
 α - angular acceleration
$$\qquad \qquad \text{Moment of inertia, I}$$

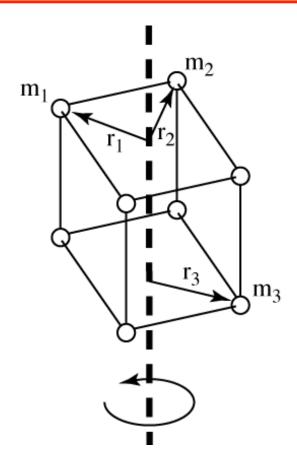
$$I\alpha = \tau_{net}$$

compare this with Newton's 2nd law

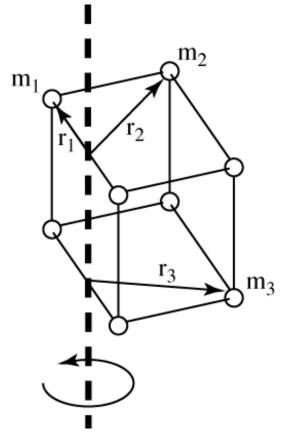
$$Ma = F$$

Moment of Inertia

$$I = m_1 r_1^2 + m_2 r_2^2 + m_N r_N^2 = \sum_{i=1}^{N} m_i r_i^2$$



* I must be defined with respect to a particular axis



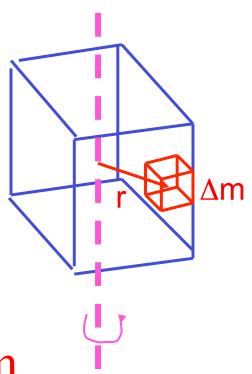
Physics 211 - Fall 2014

Moment of Inertia of Continuous Body

$$\Delta m \mapsto 0$$

$$\sum \Rightarrow \int$$

$$I = \sum_{i=1}^{N} m_i r_i^2 \implies I = \int r^2 dm$$



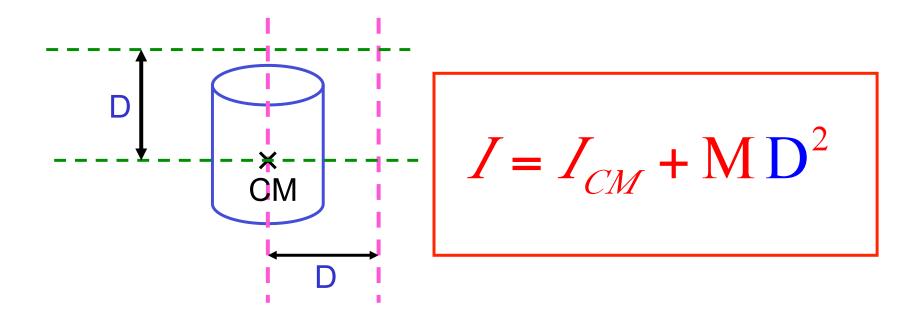
Tabulated Results for Moments of Inertia of some rigid, uniform objects

Table 9.2 Moments of Inertia of Various Bodies $I = \frac{1}{12}ML^2$ $I = \frac{1}{3} ML^2$ $I = \frac{1}{12}M(a^2 + b^2)$ $I = \frac{1}{3} Ma^2$ (a) Slender rod, (b) Slender rod, (c) Rectangular plate, (d) Thin rectangular plate, axis through center axis through one end axis through center axis along edge $I = \frac{1}{2}M(R_1^2 + R_2^2)$ $I = \frac{1}{2}MR^2$ $I = \frac{2}{5}MR^2$ $I = \frac{2}{3}MR^2$ $I = MR^2$ (e) Hollow cylinder (f) Solid cylinder (g) Thin-walled hollow (i) Thin-walled hollow (h) Solid sphere sphere cylinder

Physics 211 – Fall 2014

(from p.299 of *University Physics*, Young & Freedman)

Parallel-Axis Theorem



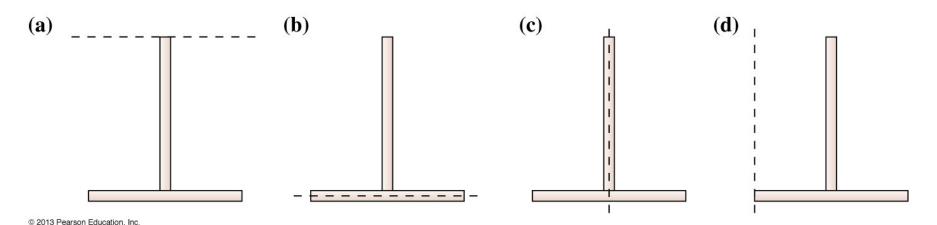
*Smallest *I* will always be along axis passing through CM

Physics 211 - Fall 2014

Practical Comments on Calculation of Moment of Inertia for Complex Object

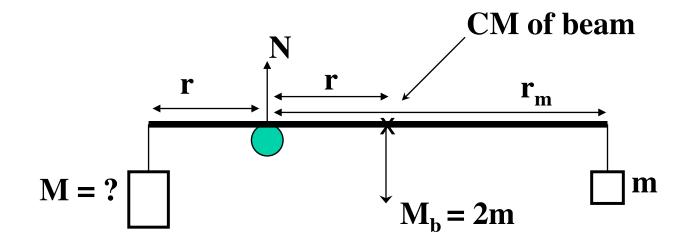
- 1. To find *I* for a *complex* object, **split** it into *simple* geometrical shapes that can be found in Table 9.2
- Use Table 9.2 to get I_{CM} for each part about the axis parallel to the axis of rotation and going through the center-of-mass
- If needed use parallel-axis theorem to get I for each part about the axis of rotation
- 4. Add up moments of inertia of all parts

13-2.1: The T's are made of two identical rods of equal mass and length. Rank in order, from smallest to largest, the moments of inertia for rotation about the dashed line?



- 1. c, b, d, a
- 2. c, b, a, d
- 3. b, c, d, a
- 4. c, d, b, a

Beam resting on pivot



Vertical equilibrium?
$$\Sigma F =$$

Rotational equilibrium?
$$\Sigma_{\tau} =$$

$$M = N = N$$

Suppose M replaced by M/2 ?

- vertical equilibrium? $\sum F =$
- rotational dynamics?

$$\Sigma_{\tau} =$$

- net torque?
- which way rotates?
- initial angular acceleration?

Moment of Inertia?

$$I = \sum m_i r_i^2$$

* depends on pivot position!

* Hence $\alpha = \tau/I =$

Rotational Kinetic Energy

$$K = \sum_{i} (1/2) m_{i} v_{i}^{2} = (1/2) \omega^{2} \sum_{i} m_{i} r_{i}^{2}$$

Hence

$$K = (1/2)I\omega^2$$

 This is the energy that a rigid body possesses by virtue of rotation 13-2.2: Two spheres of equal radius, one a shell of mass m_1 , the other a solid sphere of mass $m_2 > m_1$, race down an incline. Which one wins?

- 1. The solid sphere
- 2. The spherical shell
- 3. They tie
- 4. need more information

Sample problem: Spinning a cylinder

Cable wrapped around cylinder. Pull off with constant force F. Suppose unwind a distance d of cable

- What is final angular speed of cylinder?
- Use work-KE theorem

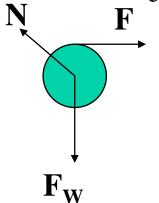
$$W = Fd = K_f = (1/2)I\omega^2$$

- Mom. of inertia of cyl.? -- from table: (1/2)mR²
 - from table: (1/2)mR²

$$\omega = [2Fd/(mR^2/2)]^{1/2} = [4Fd/(mR^2)]^{1/2}$$

cylinder+cable problem -constant acceleration method

extended free body diagram



- * no torque due to N or F_W
- * why direction of N?
- * torque due to τ = FR

radius R

* hence
$$\alpha = FR/[(1/2)MR^2]$$

= 2F/(MR)

$$\Delta\theta = (1/2)\alpha t^2 = d/R; t = [(MR/F)(d/R)]^{1/2}$$

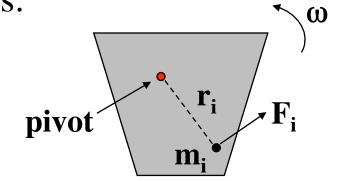
$$\rightarrow \omega = \alpha t = [4Fd/(MR^2)]^{1/2}$$

Angular Momentum

- can define rotational analog of linear momentum called angular momentum
- in absence of external torque it will be conserved in time
- True even in situations where Newton's laws fail

Definition of Angular Momentum

* Back to slide on rotational dynamics: $m_i r_i^2 \Delta \omega / \Delta t = \tau_i$



* Rewrite, using $l_i = m_i r_i^2 \omega$: $\Delta l_i / \Delta t = \tau_i$

* Summing over all particles in body:

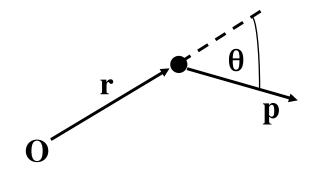
$$\Delta L/\Delta t = \tau_{ext}$$

L = angular momentum = $I\omega$

13-2.3: An ice skater spins about a vertical axis through her body with her arms held out. As she draws her arms in, her angular velocity

- 1. increases
- 2. decreases
- 3. remains the same
- 4. need more information

Angular Momentum 1.



Point particle:

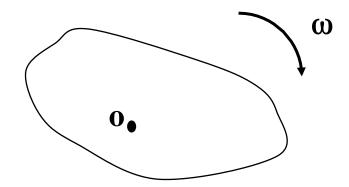
 $|L| = |r||p|\sin(\theta) = m|r||v|\sin(\theta)$

vector form \rightarrow L = r x p

direction of L given by right hand rule (into paper here)

L = mvr if v is at 90° to r for single particle

Angular Momentum 2.



rigid body:

- * $|L| = I\omega$ (fixed axis of rotation)
- * direction along axis into paper here

Rotational Dynamics

$$\tau = I\alpha$$

$$\Delta L/\Delta t = \tau$$

- These are equivalent statements
- If no net external torque: $\tau = 0 \rightarrow$
 - * L is constant in time
 - * Conservation of Angular Momentum
 - * Internal forces/torques do not contribute to external torque.

Linear and rotational motion

- Force
- Acceleration

$$\vec{F}_{\text{net}} = \sum \vec{F} = m\vec{a}$$

Momentum

$$\vec{p} = m\vec{v}$$

Kinetic energy

$$K = \frac{1}{2} m v^2$$

- Torque
- Angular acceleration

$$\vec{\tau}_{\text{net}} = \sum \vec{\tau} = I \vec{\alpha}$$

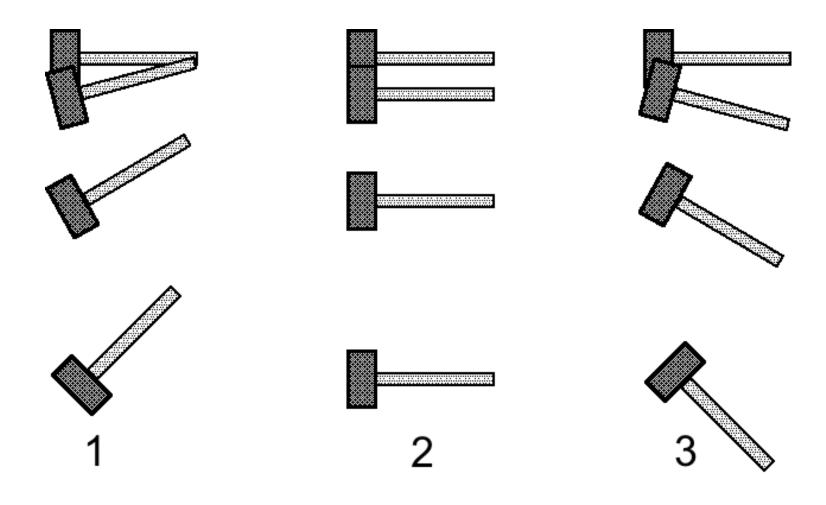
Angular momentum**

$$\vec{L} = I\vec{\omega}$$

Kinetic energy

$$K = \frac{1}{2}I\omega^2$$

A hammer is held horizontally and then released. Which way will it fall?



Physics 211 - Fall 2014

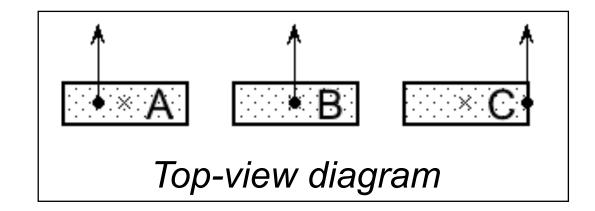
General motion of extended objects

- Net force → acceleration of CM
- Net torque about CM → angular acceleration (rotation) about CM
- Resultant motion is superposition of these two motions
- Total kinetic energy K = K_{CM} + K_{rot}

Three identical rectangular blocks are at rest on a flat, frictionless table. The same force is exerted on each of the three blocks for a very short time interval. The force is exerted at a different point on each block, as shown.

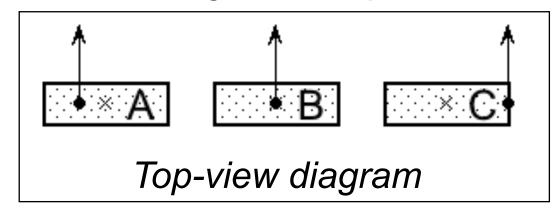
After the force has stopped acting on each block, which block will spin the fastest?

- 1. A.
- 2. B.
- 3. C.
- 4. A and C.



Three identical rectangular blocks are at rest on a flat, frictionless table. The same force is exerted on each of the three blocks for a very short time interval. The force is exerted at a different point on each block, as shown.

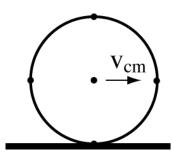
After each force has stopped acting, which block's center of mass will have the greatest speed?



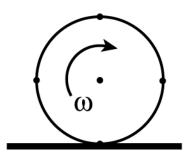
- 1. A.
- 2. B.
- 3. C.
- 4. A, B, and C have the same C.O.M. speed.

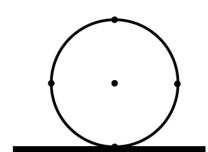
Rolling without slipping

translation



rotation

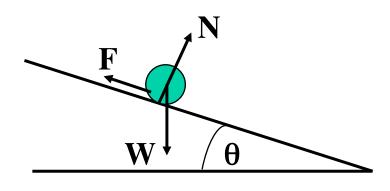




$$v_{cm} =$$

$$a_{cm} =$$

Rolling without slipping



$$\Sigma F = ma_{CM}$$

$$\sum \tau = I\alpha$$

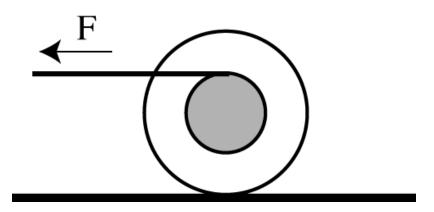
Now $a_{CM} = R\alpha$ if no slipping

So, ma_{CM}

and F =

A ribbon is wound up on a spool. A person pulls the ribbon as shown.

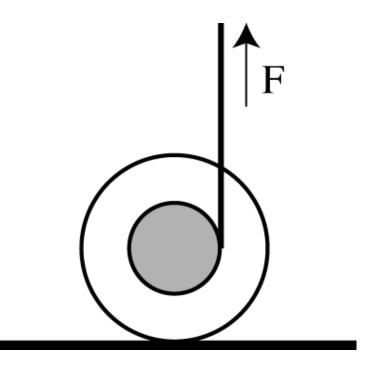
Will the spool move to the left, to the right, or will it not move at all?



- 1. The spool will move to the left.
- 2. The spool will move to the right.
- 3. The spool will not move at all.

A ribbon is wound up on a spool. A person pulls the ribbon as shown.

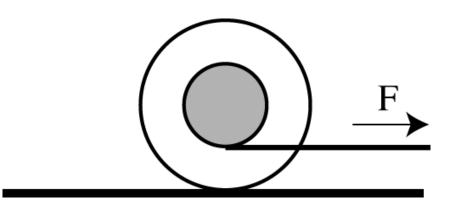
Will the spool move to the left, to the right, or will it not move at all?



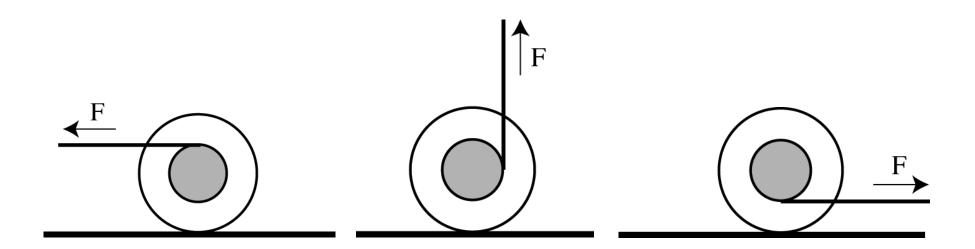
- 1. The spool will move to the left.
- 2. The spool will move to the right.
- 3. The spool will not move at all.

A ribbon is wound up on a spool. A person pulls the ribbon as shown.

Will the spool move to the left, to the right, or will it not move at all?



- 1. The spool will move to the left.
- 2. The spool will move to the right.
- 3. The spool will not move at all.



4. [30pts total + 5 bonus pts] A string is wound around the spool. The spool has a mass of M=7 kg, an outer radius of R=0.6 m and an inner radius of r=0.4 m. Moment of inertia with respect to the axis going through the center of mass is I_{cm}=0.8 kg m². Somebody is pooling on the string in horizontal direction with a force of 15 N. (Parts a,b,c of this problem are independent of each other).



4a. [20pts] Find linear acceleration of the center-of-mass of the spool (a_{cm}) rolling without slipping.

4b. [10pts] What is the kinetic energy of the spool rolling without slipping if velocity of the center-of-mass is $v_{cm}=3$ m/s?

4c. [bonus 5pts] Find linear acceleration of the center-of-mass of the spool (a_{cm}) if it is rolling with slipping and the coefficient of kinetic friction between the spool and the ground is μ_k =0.15 (use g=10 m/s²).