Welcome back to Physics 211

Today's agenda:

- Rolling without slipping
- •Angular momentum

Physics 211 – Fall 2013

Current assignments

- No Prelecture Thursday
- HW#15 due Friday, 12/5
- Final Exam, Wednesday, Dec. 10th, 3-5pm in Stolkin. One sheet of handwritten notes and a calculator are allowed (as usual).

The great race

Rolling without slipping

translation

rotation

 $a_{cm} =$

Physics 211 – Fall 2013

13-2

Sample problem: Spinning a cylinder

Cable wrapped around cylinder. Pull off with constant force F. Suppose unwind a distance d of cable

- What is final angular speed of cylinder?
- Use work-KE theorem W = Fd = $K_f = (1/2)I\omega^2$
- Mom. of inertia of cyl.? -- from table: (1/2)mR²
 from table: (1/2)mR²

 $\omega = [2Fd/(mR^2/2)]^{1/2} = [4Fd/(mR^2)]^{1/2}$

Physics 211 - Fall 2013

cylinder+cable problem -constant acceleration method

$$\rightarrow \omega = \alpha t = [4Fd/(MR^2)]^{1/2}$$

Angular Momentum

- can define rotational analog of linear momentum called *angular momentum*
- in absence of *external torque* it will be conserved in time
- True even in situations where Newton's laws fail

Rotational Motion

* Particle *i*: $|v_i| = r_i \omega$ at 90° to r_i

* Newton's 2nd law: $m_i \Delta v_i / \Delta t = F_i^T \leftarrow \text{component at 90° to } r_i$

* Substitute for
$$v_i$$
 and multiply by r_i :
 $m_i r_i^2 \Delta \omega / \Delta t = F_i^T r_i = \tau_i$

* Finally, sum over all masses:

$$(\Delta \omega / \Delta t) \sum m_i r_i^2 = \sum \tau_i = \tau_{net}$$

Physics 211 - Fall 2013

Definition of Angular Momentum

* Back to slide on rotational dynamics: $m_i r_i^2 \Delta \omega / \Delta t = \tau_i$

* Rewrite, using $l_i = m_i r_i^2 \omega$: $\Delta l_i / \Delta t = \tau_i$

9

* Summing over all particles in body: $\Delta L/\Delta t = \tau_{ext}$

L = angular momentum = I ω

15-1.1: An ice skater spins about a vertical axis through her body with her arms held out. As she draws her arms in, her angular velocity

- 1. increases
- 2. decreases
- 3. remains the same
- 4. need more information

Angular Momentum 1.

Point particle:

 $|L| = |r||p|sin(\theta) = m|r||v|sin(\theta)$

L = mvr if v is at 90° to r for single particle

Angular Momentum 2.

rigid body: * |L| = Iω (fixed axis of rotation) * direction – along axis – into paper here

Rotational Dynamics $\tau = I\alpha$ $\Delta L/\Delta t = \tau$

- These are equivalent statements
- If no net external torque: τ = 0 →
 * L is constant in time
 - * Conservation of Angular Momentum
 - * Internal forces/torques do not contribute to external torque.

Linear and rotational motion

- Force
- Acceleration

$$\vec{F}_{net} = \sum \vec{F} = m\vec{a}$$

- Momentum $\vec{p} = \vec{nv}$
- Kinetic energy

$$K = \frac{1}{2} m v^2$$

- Torque
- Angular acceleration $\vec{\tau}_{net} = \sum \vec{\tau} = I \vec{\alpha}$
- Angular momentum** $\vec{L} = I\vec{\omega}$
- Kinetic energy $K = \frac{1}{2}I\omega^2$

Physics 211 - Fall 2013

15-1.2: A hammer is held horizontally and then released. Which way will it fall?

General motion of extended objects

- Net force → acceleration of CM
- Net torque about CM → angular acceleration (rotation) about CM
- Resultant motion is superposition of these two motions
- Total kinetic energy $K = K_{CM} + K_{rot}$

15-1.3: Three identical rectangular blocks are at rest on a flat, frictionless table. The same force is exerted on each of the three blocks for a very short time interval. The force is exerted at a different point on each block, as shown.

After the force has stopped acting on each block, which block will spin the fastest?

- 1. A.
- 2. B.
- 3. C.
- 4. A and C.

15-1.4: Three identical rectangular blocks are at rest on a flat, frictionless table. The same force is exerted on each of the three blocks for a very short time interval. The force is exerted at a different point on each block, as shown.

After each force has stopped acting, which block's center of mass will have the greatest speed?

4. A, B, and C have the same C.O.M. speed.

Physics 211 – Fall 2013

15-1.5: A ribbon is wound up on a spool. A person pulls the ribbon as shown.

Will the spool move to the left, to the right, or will it not move at all?

- 1. The spool will move to the left.
- 2. The spool will move to the right.
- 3. The spool will not move at all.

15-1.6: A ribbon is wound up on a spool. A person pulls the ribbon as shown.

Will the spool move to the left, to the right, or will it not move at all?

- 1. The spool will move to the left.
- 2. The spool will move to the right.
- 3. The spool will not move at all.

15-1.7: A ribbon is wound up on a spool. A person pulls the ribbon as shown.

Will the spool move to the left, to the right, or will it not move at all?

- 1. The spool will move to the left.
- 2. The spool will move to the right.
- 3. The spool will not move at all.

4. [30pts total + 5 bonus pts] A string is wound around the spool. The spool has a mass of M=7 kg, an outer radius of R=0.6 m and an inner radius of r=0.4 m. Moment of inertia with respect to the axis going through the center of mass is I_{cm} =0.8 kg m². Somebody is pooling on the string in horizontal direction with a force of 15 N. (Parts a,b,c of this problem are independent of each other).

4a. [20pts] Find linear acceleration of the center-of-mass of the spool (a_{cm}) rolling without slipping.

4b. [10pts] What is the kinetic energy of the spool rolling without slipping if velocity of the center-of-mass is $v_{cm}=3$ m/s?

4c. [bonus 5pts] Find linear acceleration of the center-of-mass of the spool (a_{cm}) if it is rolling with slipping and the coefficient of kinetic friction between the spool and the ground is $\mu_k=0.15$ (use g=10 m/s²).

Physics 211 – Fall 2013

Rotational Dynamics $\tau = I\alpha$ $\Delta L/\Delta t = \tau$

- These are equivalent statements
- If no net external torque: τ = 0 →
 * L is constant in time
 - * Conservation of Angular Momentum
 - * Internal forces/torques do not contribute to external torque.

Rotating Star Demo

Physics 211 - Fall 2013

Gravity

- Before 1687, large amount of data collected on motion of planets and Moon (Copernicus, Galileo, Brahe, Kepler)
- Newton showed that this could all be understood with a new Law of Universal Gravitation

Universal Gravity

 Mathematical Principles of Natural Philosophy:

Every particle in the Universe attracts every other with a force that is directly proportional to their masses and inversely proportional to the square of the distance between them.

Inverse square law

Interpretation

- F acts along line between bodies
- $F_{12} = -F_{21}$ in accord with Newton's Third Law
- Acts at a distance (even through a vacuum) ...
- G is a universal constant = 6.7 x 10⁻¹¹ N·m²/kg²

The Earth exerts a gravitational force of 800 N on a physics professor. What is the magnitude of the gravitational force (in Newtons) exerted by the professor on the Earth ?

- 1. 800 divided by mass of Earth
- 2. 800
- 3. zero
- 4. depends on how fast the Earth is spinning

Motivations for law of gravity

- Newton reasoned that Moon was accelerating – so a force must act
- Assumed that force was same as that which caused 'apple to fall'
- Assume this varies like r^{-p}
- Compare acceleration with known acceleration of Moon → find p

Apple and Moon calculation

$$a_{M} = kr_{M}^{-p}$$
$$a_{apple} = kr_{E}^{-p}$$
$$a_{M}/a_{apple} = (r_{M}/r_{E})^{-p}$$

But:
$$a_{rad} = v^2/r$$
; $v = 2\pi r/T$
 $a_M = (2\pi r_M/T)^2/r_M = 4\pi^2 r_M/T^2 = 2.7 \times 10^{-3} \text{ m/s}^2$
 $a_M/a_{apple} = 2.7 \times 10^{-4}$
 $r_M/r_E = 3.8 \times 10^8/6.4 \times 10^6 = 59.0 \rightarrow p = 2!$

Physics 211 - Fall 2013

The gravitational force between two asteroids is 1,000,000 N. What will the force be if the distance between the asteroids is doubled?

- 1. 250,000 N.
- 2. 500,000 N.
- 3. 1,000,000 N.
- 4. 2,000,000 N.
- 5. 4,000,000 N.

What is g?

• Force on body close to $r_E = GM_E/r_E^2 = mg \rightarrow g = GM_E/r_E^2 = 9.81 \text{ m/s}^2$

- Constant for bodies near surface
- Assumed gravitational effect of Earth can be thought of as acting at center (ultimately justified for p = 2)

Planet X has free-fall acceleration 8 m/s^2 at the surface. Planet Y has twice the mass and twice the radius of planet X. On Planet Y

- 1. $g = 2 \text{ m/s}^2$.
- 2. $g = 4 \text{ m/s}^2$.
- 3. $g = 8 \text{ m/s}^2$.
- 4. $g = 16 \text{ m/s}^2$.
- 5. $g = 32 \text{ m/s}^2$.

Kepler's Laws experimental observations

1. Planets move on ellipses with the sun at one focus of the ellipse (actually, CM of sun + planet at focus).

Kepler's Laws experimental observations

2. A line from the sun to a given planet sweeps out equal areas in equal times.

*Conservation of angular momentum

Physics 211 - Fall 2013

The following is a log-log plot of the orbital period (T) compared to the distance to the sun(r). What is the relationship between T and r?

Kepler's Laws experimental observations

- 3. Square of orbital period is proportional to cube of semimajor axis.
- We can actually deduce this (for *circular orbit*) from gravitational law
- assume gravity responsible for acceleration in orbit →

Orbits of Satellites

 Following similar reasoning to Kepler's 3rd law →

$$GM_EM_{sat}/r^2 = M_{sat}v^2/r$$

 $v = (GM_E/r)^{1/2}$

Physics 211 – Fall 2013

The moon is in free fall around the earth.

Gravitational Field

- Newton never believed in *action at a distance*
- Physicists circumvented this problem by using new approach – imagine that every mass creates a *gravitational field* Γ at every point in space around it
- Field tells the magnitude (and direction) of the gravitational force on some test mass placed at that position $\rightarrow F = m_{test}\Gamma$

Physics 211 - Fall 2013

Gravitational Potential Energy

Gravitational Potential Energy

Define the gravitational potential energy U(r) of some mass m in the field of another M as the work done moving the mass m in from infinity to r

$$\bullet \qquad U = \Sigma F(r) \Delta r = -GMm/r$$

A football is dropped from a height of 2 m. Does the football's gravitational potential energy increase or decrease ?

- 1. decreases
- 2. increases
- 3. stays the same
- 4. depends on the mass of football

Gravitational Potential Energy near Earth's surface

 $U = -GM_Em/(R_E+h) = -(GM_Em/R_E) 1/(1+h/R_E)$

For small $h/R_E \rightarrow (GM_Em/R_E^2)h = mgh!!$ as we expect

Called the "flat earth approximation"

Energy conservation

- Consider mass moving in gravitational field of much larger mass M
- Since W = $-\Delta U = \Delta K$ we have: $\Delta E = 0$ where E = K+U = $1/2mv^2$ - GmM/r
- Notice E < 0 if object *bound*

Escape speed

• Object can just escape to infinite r if E=0

$$\rightarrow (1/2)mv_{esc}^{2} = GM_{E}m/R_{E}$$
$$\rightarrow v_{esc}^{2} = 2GM_{E}/R_{E}$$

- Magnitude ? 1.1x10⁴ m/s on Earth
- What about on the moon ? Sun ?

Consequences for planets

- Planets with large escape velocities can retain light gas molecules, e.g. Earth has an atmosphere of oxygen, nitrogen
- Moon does not
- Conversely Jupiter, Sun manage to retain hydrogen

Sample problem: A less-than-successful inventor wants to launch small satellites into orbit by launching them straight up from the surface of the earth at a very high speed.

A) with what speed should he launch the satellite if it is to have a speed of 500 m/s at a height of 400 km? Ignore air resistance.

B) By what percentage would your answer be in error if you used a flat earth approximation (i.e. U = mgh)?

Black Holes

- Suppose light travels at speed c
- Turn argument around is there a value of M/R for some star which will not allow light photons to escape ?
- Need M/R = c²/2G → density = 10²⁷ kg/m³ for object with R = 1m approx
- Need very high densities possible for collapsed stars