
PHY 211 – Exam 2 (Version 1)

Name (please print):					
SUID:					
Please circle your TA's name:	Richard	Prashant	Raghav	Francesco	0
It is very important that you po before you read any questions		me at the top	of the exa	am page. ∣	Please do it
Document your work. Use the be	ack of each	sheet if you ru	n out of sp	ace.	
1.[25 pts total] Mike throws a ground and a speed of 22 m/s. releases the ball.					
a. [6 pts] What are the x and reference frame?	l y compone	nts of the initia	al velocity o	of the ball in	n Mike's
b. [3 pts] Is the ball heading	east or wes	t in Nancy's re	ference fra	ime?	

c. [8 pts] What is the ball's initial speed in Nancy's reference frame?
d. [8 pts] What is the ball's initial angle in Nancy's reference frame?

2. [25 pts total] The following diagram shows a 75 kg person holding onto a rope running through a pulley with a 100 kg block attached to it. Assume that the string and pulley are massless and that there is no friction in the pulley. The system is at rest.

a. [5 pts] Draw the free-body diagrams for the person and for the block, labeling all of the forces acting on each. Make sure to label which free-body diagram is which.

b. [10 pts] What is the tension in the rope?

c. [10 pts] The block rests on an industrial-size scale. What is the reading of the scale (in Newtons)?

speed coeffic	up the cient of	[al] A 0.050 kg wooden block at the bottom of a wooden ramp is given an initial ramp of 3.0 m/s. The ramp is inclined at 23° above level ground. The kinetic friction of wood on wood is 0.20 and the coefficient of static friction of d is 0.50.
a.	[4pts]	Draw a diagram of the situation and draw the free body diagram for the block.
b.	[9pts]	How far up the ramp is the block when its speed slows to zero?
c.	placed	What is the maximum angle to which the ramp can be raised before the block I at rest on the ramp will start to slide down? Justify your answer from Newton's and our model of friction.
d.		When the block's speed slows to zero in the above example does it start to eack down, or does it stay where it is? Explain.

4. [25 pts total] A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is painted on the edge of the disk. The disk accelerates at 600 rad/s ² for $\frac{1}{2}$ s, then coasts at a steady angular velocity for another $\frac{1}{2}$ s.					
a.	[6 pts]	What is the speed of the dot after ½ s?			
b.	[6 pts]	Through how many revolutions has the dot turned after ½ s?			
C.	[6 pts]	What is the speed of the dot after 1 s?			
d.	[7 pts]	Through how many revolutions has it turned after 1 s?			

Formula Sheet for Physics 211

$$\vec{v} = \frac{d\vec{x}}{dt}; \quad \vec{a} = \frac{d\vec{v}}{dt}$$

$$\Delta x = x(t_2) - x(t_1) = \text{ signed area under the } v(t) \text{ curve from t1 to } t2 = \int_{t_1}^{t_2} v(t)dt$$

$$\Delta v = v(t_2) - v(t_1) = ext{signed area under the a(t) curve from t1 to } ext{t2} = \int_{t_1}^{t_2} a(t) dt$$

$$v_x = v_{0x} + a_x t; \quad x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2; \quad v_x^2 = v_{0x}^2 + 2a_x \Delta x$$

$$\theta = \frac{s}{r} : \theta$$
 in radians; $\omega = \frac{d\theta}{dt}$ $\alpha = \frac{d\omega}{dt}$

$$a_c = a_{rad} = \frac{v^2}{r}; \quad T = \frac{2\pi r}{v}$$

 $v=\omega r$: ω in radians per unit time; $a_{tan}=\alpha r$: α in radians per unit time squared

$$\omega = \omega_0 + \alpha t; \quad \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2; \quad \omega^2 = \omega_0^2 + 2\alpha \Delta \theta$$

$$ec{v} = v_x \hat{i} + v_y \hat{j}; \quad v_x = |v| \cos(\theta); \quad v_y = |v| \sin(\theta)$$

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2}; \quad heta = an^{-1}(v_y/v_x)$$

$$\vec{v}_{CB} = \vec{v}_{CA} + \vec{v}_{AB}$$

$$g = 9.8m/s^2$$

$$ec{F}_{net} = \sum_i ec{F}_i = m ec{a}; \quad ec{F}_{AB} = - ec{F}_{BA}$$

$$|\vec{F}_{fk}| = \mu_k N; \quad |\vec{F}_{fs}| \le \mu_s N$$

$$|F_{net,radial}| = \frac{mv^2}{R}$$